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SOFTWARE DESIGN IMPROVEMENTS

PART II -- SOFTWARE QUALITY AND THE DESIGN AND INSPECTION PROCESS

1. SOFTWARE DEVELOPMENT SPECIFICATIONS

Fig 1. IMPROVING SOFTWARE

-Improving software with standards & controls includes:

-Robust design - making software fault tolerant

-Process controls - standardizing the software develop-
ment process.

-Design standards -- standardizing the software specifi-
cations

-Inspection - standardize the software requirements in-
spection process.

-Inspection of Code - standardize the software code in-
spection process

Precise and easily readable documentation and specifications

are needed for a successful software project. Ideally, formal

methods and specifications language should be used. Once

they are written they must be understood and adhered to. To

do this successfully, there must be team participation in

document and specification generation. There also must be

real support of the specifications, document and the verifica-

tion of conformance and validation of the software itself by

upper management and the team.

Fig2. SOFTWARE DEVELOPMENT SPECS.

• Software Management Plan

• Software Design Specifications

•Software Development Plan

•Plan for Formal Inspection of Software

•Software Safety Program Plan
•Software Maintenance Plan

•Configuration Management Plan

• Interface Control Document(s)
• Failure Review Boards

• Lessons Learned

Some of these documents and related practices should
include:

(1) A formal software management plan that includes the

software development cycle, the configuration manage-

ment plan, approval authority and group charter and

responsibilities. This plan would specify what other

documentation is required, how interfaces are to be con-

trolled and what the quality assurance and verification

requirements are.

(2) A formal software design specification which includes
architecture specifications and hardware interfaces.

(3) A software development plan that describes development

activities, facilities and personnel, activity flow and the

development tools used to generate the software.

(4) A plan for formal inspection of software that included a
software quality assurance plan to integrate hardware and

software safety, quality and reliability. This would have a

software verification test specification and a software

fault tolerance and failure modes and effects analysis

specification.

(5) A software safety program plan which includes a software

safety handbook and reliability practices specifications.

(6) A formal plan for maintenance and operation.

(7) Configuration management and documentation plans

should specify recording all changes to software and the

reasons for the changes. Records should include designs

change that require software modifications. Also, any

change in the functional capabilities, performance specifi-

cations or allocation of software to components or inter-
faces should be noted.

(8) Interface control documentation should specify linking

hardware and software, and vendor-supplied software and

internally generated software.

(9) Failure review boards are needed to review bugs, the bug

removal process, and review their overall effect on the

system.

(10) Lessons learned should be used to document problems

and solutions to eliminate repetition of errors.

(11) Test plans that will to the greatest extent possible, vali-

date the software system.

Once these documents are developed and procedures set up,

they must be implemented, enforced and maintained. A soft-

ware system safety working team (multidisciplined) can assist

software engineering and continually monitor adherence to

the documentation. They also have to engender respect for

the need to follow the specification, not mandate them and

walk away. Therefore, the team and software engineering

management also needs to educate programmers in the

understanding and use of the specifications.

2. SPECIFICATIONS & PROGRAMMING STANDARDS

Structured programming with a well-defined design

approach, extensive commenting benefits the software design



process.Standardizingformats, nomenclature and language

as well as standardized compilers and platforms for the

software contribute to project success as well. Besides many

excellent internal company standards for software

development, a number of documents exist to help in the

standardization process and to gauge the maturity of the

software development effort.

Fig3. SPECIFICATIONS & PROGRAMMING STDS.

Fig4. NASA SOFTWARE INSPECTION ACTIVITIES

• Implementation of requirements.
• Review of pseudo code.

• Review of mechanics.

• Review of data structure.

• Code "walk-thru"

.V&V

olV&V

•Capability Maturity Model
• ISO 9000-3 Software Guidelines

• IEEE Software Engineering Standards Collections
• NASA developed software standards
• DOD Standards.

Some of these documents are:

(1) The Software Engineering Institute (SE1) Capability

Maturity Model (CMM) is a method for assessing the soft-

ware engineering capabilities of development organizations.

It evaluates the level of process control and methodology in

developing software. It is designed to rank the "maturity" of
the company and its ability to undertake major software

development projects.

(2) ISO 9000-3 Software Guidelines, Part 3, Guidelines for

the application of ISO 9001 to the development, supply and

maintenance of software is intended to provide suggested
controls and methods.

(3) IEEE Software Engineering Standards Collections include

22 standards (1993 edition) covering terminology, quality

assurance plans, configuration management, test documenta-

tion, requirements specifications, maintenance, metrics and

other subjects.

(4) NASA developed software standards include NSS

1740.13, INTERIM, June 1994, NASA Software Safety

Standards that expands on the requirements of NASA

Management Instruction (NMI) 2410.10, NASA Software

Management Assurance and Engineering Policy. These docu-
ments contain a detailed reference document list.

(5) DOD Standards include MIL-STD-882C, System Safety

Program Requirements, DOD-STD-2167A, Defense System

Software Development, MIL-STD-498, Software Develop-
ment and Documentation and numerous other standards and

guidelines.

3. NASA SOFTWARE INSPECTION ACTIVITIES

We now want to focus in on one area of the software docu-

mentation, testing, inspection and qualification process: the

software inspection activity. This inspection process includes

a number of areas: (1) metrics, (2) software inspection

training, and (3) formal software inspection.

The objectives of formal inspection include: (1) removing

defects as early as possible in the development process, (2)
having a structured, well-defined review process for finding

and fixing defects, (3) generating metrics and checklists used

to improve quality, (4) following total quality management
(TQM) techniques--working together as a team and (5) hav-

ing responsibility for a work product shared by author's

peers.

Fig 6. FORMAL INSPECTION OVERVIEW

• Objective to remove defects as early as possible in the
development process.

• Structured, well-defined review process for finding and
fixing defects.

- Conducted by small teams of peers with assigned
roles.

- Each participant has vested interest in work
product.

- Held within development phases on completed
portions of engineering products.

• Metrics & checklists used to improve quality.

• Responsibility for work product shared by author's
peers.

To achieve these objectives, specifications must be review-

able and formally analyzable. They also must be usable by

both the designers and by assurance and safety engineers.

Further the specifications must support completeness and

robustness checks and they must support the generation of
mission test data.

3.1. Formal Design Requirements and Inspections

The objective of the inspection process is to remove defects

at the earliest possible point in the product development

lifecycle. The product can be a document, a process, soft-

ware or a design. Inspection topics include requirements,

design requirements, detailed design requirements, source

code, test plans, procedures, manuals' standards and plans.

Inspection is a very structured process that requires each
member of a team to have a real interest in the software

product. They are involved because of their technical exper-

tise with the product. The inspection should be considered a

tool to help the author identify and correct problems as early

as possible in the development process. Inspectors should not
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beviewedascriticswhoseonlyjob is to fredfault.This
inspectionshouldhelpdevelopateamenvironmentemphasiz-
ingthateverybodyis involvedin developinga highquality
product.

Metrics(e.g.,minorerrorsdiscovered,major errors discov-

ered) generated during this process are used to monitor the

type of software defects discovered and to help prevent their

reoccurrence.

3.2. Process Overview

Staff, procedures, development time and training are applied

to a developing software product to improve its quality. The

formal seven step program for inspection includes:

The planning phase where organizing for the inspection

takes place.

The training phase where team members are given

background and details for the inspection activity.

The preparation phase where individual inspectors review

the work prior to the joint inspection meeting.

The inspection meeting where the team identifies, classifies
and records defects.

The "third hour" (cause phase) where the programmers

participate in off-line discussions to get help with the
defects.

The rework phase (corrective action) where the

programmers correct the defects.

The follow-up phase where the revisions are reviewed and

verified by the team.

3.3. Roles

Fig7. ROLES IN FORMAL INSPECTION

• Moderator

-Author

• Reader

• Recorder

•Inspector

Coordinates & conducts the inspection
process.

Produces the work product and performs

rework.

Presents the work product to the inspection

team during the inspection meeting.
Documents defects identified during the

inspection meeting.

Identifies defects in the work product.

Each person who participates in the inspection takes on vari-

ous tasks. The moderator coordinates the inspection process,

chairs the inspection meetings and makes sure the inspection

process is carried out.

The reader presents the work product to the inspection

team during the meeting. The reader does this instead of

the programmer (author).

The recorder documents all the defects, open issues and

action items that are brought forward during the meeting.

The job of inspector is the responsibility of every person in
the meeting. Each person helps to identify and evaluate
defects.

3.4. Development Process Benefits.

Some of the benefits of this inspection process for the overall

software development process include:

Fig8. BENEFITS OF FORMAL INSPECTION FOR
SOFTWARE DEVELOPMENT

• Improves quality and gives cost savings through early
fault detection and correction.

• Provides a technically correct base for the following
phases of development.

• Contributes to project tracking.

• Improve communication between developers.

• Aids in the project education of personnel.

• Provides structure for in-process reviews.

This inspection process also benefits the software developer

in a number of ways:

Fig9. BENEFITS OF FORMAL INSPECTION FOR
DEVELOPERS

• Provides technical support during product
development.

• Reduces repetition of defects through early detection.

• Identifies missing elements in work product (according
to data kept by the Jet Propulsion Lab, 60% of all
defects are missing requirements).

• Provides team development support environment.

• Provides project training and expands expertise across
development phases.

Some of the benefits of this inspection process are as fol-
lows:

(1) The number of defects made by the author is reduced
since defects are identified early in the product life cycle.

(2) Omissions in the requirements are identified efficiently by

this process.

(3) The inspection team supports the programmer with con-

structive criticism and guidance rather than tearing down

software in open, public project design reviews.

(4) The inspection process benefits the entire team because

they benefit from lessons learned and mistakes of others

in a constructive atmosphere.

(5) Improved project tracking is implemented with the

inspection milestones imbedded in the project.

(6) The inspection process helps bring together project per-

sons from varied backgrounds and the resultant commu-
nication helps teamwork and improves understanding of

the overall project.

(7) New members of the software development team are

trained by working with the senior team members.



Figure 5.0 - Flow Chart for the Software Development Process
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The waterfall flow chart of the software development process

(Based on phases in DOD-STD-2167A, Defense System Software
Development). The acronyms are as follows:

I = Software Inspections
V&V = Verification and Validation Activity
IV&V = Independent Verification & Validation Activity
CSCI = Computer Software (SW) Configuration Item--

(Major SW Program)
CSU = Computer SW Unit--(Program Module)

INTEGRATION _ [ _, OPERATIONAL _._1

& TESTING "_ I _" TESTING &
MAINTENANCE

SRR = System Requirements Review
SDR = System Design Review
SSR = Software Specification Review
PDR = Preliminary Design Review
CDR = Critical Design Review
TRR = Test Readiness Review

FCA = Functional Configuration Audit
PCA = Physical Configuration Audit
FQR = Formal Qualifications Review

3.5. Basic Rules of Inspection.
There are a number of basic rules that need to be followed if

the software inspection process is to be effective.

Fig 10. BASIC RULES FOR INSPECTION

• Inspections are carried out at a number of points inside

designated phases of the software life cycle and

compliment major milestone reviews.

• Inspections are carried out by peers representing the

areas of the life cycle affected by the material being

inspected. Everyone participating should have a vested

interest in the work product.

• Management is not present during inspections.

Inspections are not to be used as a tool to evaluate

workers.

,Inspections are led by a TRAINED Moderator.

• TRAINED inspectors have assigned roles.

These include:

(1) Inspections are in-process reviews conducted during the

development of a product in contrast to milestone reviews

conducted between development phases.

(2) Inspections are conducted by a small peer team. Each

member has a special interest in the project success.

(3) Managers are not involved in the inspection and the

results of the inspection are not used as a tool to evaluate

developers.

Fig 11BASIC RULES FOR INSPECTION (continued)

• inspections are carried out in a prescribed series of

steps.

• Inspection meetings are limited to two hours.

• Checklists of questions are used to define the task and
to stimulate defect finding.

• Material is covered during the inspection meeting within
an optimal page rate range which has been found to
give maximum error finding ability.

•Statistics on the number of defects, the types of
defects, and the time expanded by engineers on the
inspections are kept.

(4) The moderator leads the inspection process and must have

received formal training to do so,

(5) Each team member is assigned a specific role as well as

that of an inspector.

(6) The inspection process is spelled out in detail and no step

of the process is left out.



(7)Theoveralltimeoftheinspectionispresettoaidin
meetingtheschedule.

(8)Checklistsareusedtohelpidentifydefects.

(9)Inspectionteamsshouldworktoanoptimalinspection
rate.Theobjectof themeetingisnottocoverasmany
pagesaspossiblebuttoidentifyasmanydefectsaspos-
sible.

(10)Inspectionmetricsondefecttype,numberandtime
spentoninspections.Thesemetricsareusedtoimprove
thedevelopmentprocess,theworkproductandto
monitortheinspectionprocess.

3.6.Resultsof SoftwareInspections

Inspectionsareacostsavingsincefixingdefectsearlyin the
softwaredevelopmentcycleislesscostlythanremovingthem
later.

Work Hours
Needed

to Fix a Defect

Formal Inspections

Testing

0.7

5to 18

It is less expensive to fix defects early in the Life Cycle
rather than waiting for test!

Fig 12. Resource Hours Per Defect

Further the training provided to the team members in the

bug identification and removal process is a valuable

development tool.
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AT THEIR SOURCE

Fig 13. Amplification Of Requirements Into Source Code

To fix a defect found with formal inspections costs less than

one hour each on the average. To fLX a defect found in soft-

ware test typically has cost from 5 to 18 hours. Defects also

tend to amplify. One defect in requirements or design may

impact multiple lines of code. A small study conducted by

the Jet Propulsion Laboratory OPL) found an amplification
rate of 1 to 15.This means that one defect in the requirements

impacts 15 source line of code (SLOC). [1]

• Developed by IBM Federal Systems Division, Houston.

• Inspections applied from 1982 to 1985 on
Requirements, Design, Code, Test Plans,
Specifications, Procedures.

• During this period, operational defect rate was
reduced from:

2.25 to 0.08 DefectslKLOC I

This is one of the best examples of Quality
improvement resulting from inspections.

.... (tz)

Fig 14. Inspection Experience - Shuttle Software

Inspections were used at IBM Federal Systems to develop

software for the Space Shuttle. The original defect rate of

2.25 defects per thousand lines of code was unacceptable.

Over a three year period, inspections were applied on

requirements, design, code and test plans, specifications and

procedures. The goal for this effort was 0.2 defects/ thou-

sand lines of code (KLOC). With inspections, the project was

able to surpass the goal and reach a defect rate of 0.08
defects/KLOC.

Fig15. QUALITY AND COST BENEFITS OF FORMAL
INSPECTION

• Eliminating defects early - at their source.

• Reducing amplification of defects.

• Improving software development efficiency.

• Improving developer efficiency.

One of the most essential lessons learned from initial imple-

mentation of the inspection process is that all inspection par-

ticipants require some type of training. Everyone needs to

understand the purpose and focus of inspections and the

resources required to support the process. Adequate time has

to be provided for inspections in the software development

process. Furthermore use of metrics from inspections pro-
vides an excellent basis for monitoring both the inspection

and development process and as a means to evaluate process

improvements.

Fig 16. FORMAL INSPECTION REQUIRE PROJECTS TO
HAVE THE FOLLOWING:

• An established development life cycle.

• An established set of documents produced during the

phases of the life cycle.

• Software development standards.

• Programming standards



Fig 17. ADDITIONAL BENEFITS TO THE PROJECT

• NASA Software Assurance Standard NASA-STD-
2201-93 Requirement:
"Software verification and validation activities shall be
performed during each phase of the software life cycle
and shall include formal inspections"

Fig 18. IN SUMMARY

• Formal inspections can be used with any development
methodology because no matter which development
process or lifecycle is used, products are being
produced which can be inspected.

• Formal inspections are applied during the development
of work products. They are a compliment to milestone
or formal reviews and are not intended to replacethem.

• Formal inspections are recommended by the NASA
Software Assurance standard and can be applied to the
work products called out in the NASA Software
Documentation Standard.

4. ADDITIONAL RECOMMENDATIONS:

On the basis of an evaluation of Space Shuttle software

development process, the following recommendations were

made. [2]

Fig 19. ADDITIONAL SOFTWARE RECOMMENDATIONS
FOR MAJOR PROJECTS

eV&V inspection recommendations.

• Sufficient personnel.

• Standards & procedures applied to all contractors.

•Visibility of potential software problems.

• Policies & guidelines.
• Sufficient resources.

• Lessons learned.

• Information responsibility.

(1) V&V inspections by contractors should pay close attention

to off-nominal cases (crew/ground error, hardware failure,

software error conditions). V&V inspection should also focus

on verifying consistency between levels of descriptions for

modules and verify consistency between module require-

ments and the design platform. V&V should also assure cor-

rectness with respect to the hardware and software platforms.

Real independence of IV&V should also be maintained.

(2) Have sufficient personnel in system reliability and quality

assurance (SR&QA) to support software-related activities and

provide sufficient oversight and evaluation of software devel-

opment activities by the individual SR&QA offices.

(3) Provide for multiple centers on the same program having

and enforcing the same standards & procedures. Consistent

software development coding guidelines should be provided

to contractors.

(4) Provide visibility for potential software problems by

defining detailed procedures to report software reliability,

QA or safety problems to the program-level organization.

(5) Provide accepted policies and guidelines for development

and implementation of software V&V, IV&V, assurance and

safety. This should also include a well-documented mainte-

nance and upgrade process.

(6) Provide sufficient resources, personnel and expertise to

developing the required standards. Also provide sufficient

resources, manpower and authority to compel development

contractors to provide sufficient information for verification

that proper procedures are followed.

(7) Capture lessons learned (as mentioned earlier) in the

development, maintenance, and assurance of software to be
used by other programs. [3,4]

(8) Precisely identify the information that each development

and oversight contractor is responsible for making available
to the community as a whole. Put in place mechanisms nec-

essary to ensure that programs are given all information
needed to make intelligent implementations of software

oversight functions.

5. CONCLUSIONS

The overall software design process will be improved by

carefully constructing initial documentation to generate real

and usable requirements. Requirements must be capable of

being verified by inspection and test.

Fig20. FINAL REMARKS

• Formal processes, good documentation, real
adherence to documentation and standards, applying
recommendations of reviewers and taking to heart the
software axioms presented will greatly improve the
software design and development process.

These software product assurance activities including formal

inspection, production quality metrics, software inspection

training, code "walk-through," V&V and IV&V which in

turn, are making NASA projects more successful.
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